Pursuits of Design and Robotics

The documentation of concept development and general processes

Leave a comment

Sketch Helper: Precedents, Ideas, Goals.

There are a couple of projects that were really inspiring to me as drawing aids. The first being from a Carnegie Mellon student from Computation Design years ago, Sketch it, Make it, which is now called Zotebook. The app allows you to draw quickly on your tablet and it offers corrections and perfections as you go.

What is particularly nice about this application is that it can be output straight to a 3d-printer or laser-cutter to create quick models that were drawn up in minutes. Very useful and accurate way to ‘sketch’ prototypes and have them realized immediately.

Another precedent to look at is the NeoLucida which incidentally was also started by someone who was at CMU, Pablo Garcia. The NeoLucida is essentially a lucida with some electronics involved. It allows the user to trace the reality that the user sees through the lucida as it is projected, in a way, on to the paper.

This project is great for its unobtrusiveness in the analog process. It does not limit the user, as it can only provide visual suggestion. I think this could help a lot in how I think about how my application will aid the drawing process.

People today are relying quite heavily on the aid of technology and in my opinion it is losing people the touch of the hand, the personal quality of mistakes, imperfections, and personality. This feels especially true in renderings of architecture, as the goal is to be realistic but in being so all images to me look like they could be made by the same person, nothing really stands out. I think it’s valuable to add personal flair to an image. In the style of the drawing, through the personal touch. Even when this is not the case, when the drawer is simply trying to quickly output a sketch for an idea, when using technology the image tends to come out very complete-looking. The common thought about this is that completed and accurate drawings look resolved and thus makes the conceptual idea being communicated uninviting to critiqued by clients or peers because it seems resolved. This is a real issue in the world of HCI, for example, when it comes to sketching user interfaces and testing them with surveys. The surveyor will feel inclined to say less if the tested product is more complete or finalized looking.

Essentially then, what feels necessary that seems missing in the technologically aided drawing world is something that provides the efficiency that drew people into the digital drawing world, while maintaining the hand-drawn sketch feeling that can only be provided by the old fashioned pen-and-paper method. My idea is to make that happen using the Equill pen and combining it with another technology, which I’m currently considering to be either a screen or a projector.

This is what I had had up until a short while ago, using the Surface Pro 3 and its pen with the tip replaced by a piece of graphite. As you can see in the second video there are plenty of comments to be made on how it can be improved.

In addition to Rohan’s comments in the video, I’ve also come to the conclusion that there should also be a small space designated to construction drawing. As you saw, Rohan even drew a smaller version of what he was to draw. It is common in perspective drawings to first draw a floor plan and the viewpoint and viewing angle. I could use that basic plan and possibly an additional section to automatically construct the room for the user.

Because that could be complicated and not quite intuitive for a beginner, I’m also considering having the option for a default scaffolding that can be navigated through and have the view be selected before beginning the drawing process. This option allows for a building off of the scaffold, which could inspire ideas and be easier to start from than nothing.

I think both can be done. I am currently tapping into the Equill Pen SDK and trying to figure out how to take advantage of all of its features. I am hoping to move completely away from the Surface Pen because it is obviously limited to itself, while the Equill can work on multiple platforms.


Leave a comment

Sketch Helper

Pen with graphite tip replacing the plastic one it comes with


SketchHelper is an app that aids in the analog perspective sketching process. The idea is that the artist can use the application to provide on-the-go construction lines. Currently the design of the interface is static and not technically optimal; there is much left to be done in this project and for this reason it will be continued next semester with a lot of surveys, user-testing, and design upgrades based on the advice.

SketchHelper speaks to the growing world of intelligent machine-aids in analog processes. The interest to these kinds of process designs is to create potential for the quick and intuitive methods of making that people are capable of responding to in the living world, in real time, to incorporate efficiency and insight and thus allow the designer to create things, and in ways, that might not have been possible before. By doing the tedious work for the designer and intelligently responding to the designers gestural habits, this application will become embedded into the processes that designers are already familiar with. I envision the work to be analogous to a calculator in the math world, there to make math easier but not to replace the person’s thought process.

The first video shows the app in use at high speed. The second video shows someone who was newly introduced to the application at that instant and providing what I considered to be extremely insightful feedback, and communicates the direction that I intend on going as I continue this project.

Leave a comment

Enchanted Object: “SoapBox: Lonely Dog Up For Adoption” by Priya Granadas and Yeliz Karadayi

SoapBox: Lonely dog up for adoption from Priya Ganadas on Vimeo.

SoapBox is a puppy who likes pretending he goes on adventures though really he just likes to sit on his couch. SoapBox is lonely and looking for love, however, if you hit him he will like you less and less. He is forgiving though, of course, and if you hold your hand out to him gently and wait to pet him, you might win him over and he’ll reach back out for your love. He gets confused when you disappear out of view, and he gets bummed when he’s alone. Voice reactions indicate his mood, and he moves when he’s reaching out for you to pet him. SoapBox wants to learn to love!

Alone Soap sits, waiting for someone to love

Alone Soap sits, waiting for someone to love

Could it be? Will somebody take me?

Could it be? Will somebody take me?

Alas, no. I continue to sit here sobbing on my SoapBox.

Alas, no. I continue to sit here sobbing on my SoapBox.


Leave a comment

SoapBox Code

Well, this code kicked my face. But I think I got it. 

Let’s start with the obvious information: I have a distance sensor, and I have a servo. When the distance provides some desired information, Soap will return a desired output. I start with smoothing, because I’m starting to think everything should always be smoothed, at least a little, for better results. After I smooth, I track. I track by putting the smoothed distance values in an array for 10 frames [so trackingArray.length = 10] which is no time at all, but better than tracking for seconds, meaning high tolerances, and thus lower reflexes. So the dog tracks your movement for 10 frames which is probably around a second. Then the dog runs some tests on this information. If you mass addition the differences between the distances from one frame to the next, the result will yield whether or not you are approaching the dog or distancing from it. This result also tells you, on average for the past 10 frames, how fast the movement was as well. 

Additionally there are factors such as slow movement while being close to the dog versus fast movement far away from the dog, and so on. My favorite aspect of this puppy, though, is that he knows if you are hitting him, and he gets upset with you. For every frame that the dog interprets your movements as a hit, he will become jaded and less friendly to your approach. If you patiently hover your hand slowly to him, however, he will grow to like you again.

I was pretty proud of this code for a first project. Priya and I faced a lot of struggles in dealing with the COM Port communicating while the servo was plugged in, which I learned today [also known as too late] was the fault of the cable I was using to load the code to the Arduino. Additionally, we also struggled heavily with the sound output which Priya took charge of and failed after I failed first. We still don’t know why that didn’t work. It worked on all of the example files, but not on ours. However I know the rest of the code works due to the most lovely Serial.println function.

So, all you need is a Servo and a distance sensor and this disastrous code will tell you what’s up.

#include <Servo.h>
//orange to ground
//red to 24
//green outputs 24
Servo arms;
Servo head;

int distThresh = 600;
int soundThresh = 600;

int distSensor = 0;
int microphone = 1;

int armsPin = 9;
int headPin = 10;

int const smootheFC = 3;
int thisSmooth = 0;
int smoother[smootheFC];
int average;
int total;

int const trackFC = 10;
int thisFrame = 0;
int trackMovement[trackFC];

int frameCounter= 0;
int timeToMove = 1000;
int averageGen = 0;

int const stateCount = 5;
int stateIndex = 0;
int states= 0;
int saveStates[stateCount];

void setup()
pinMode(7, OUTPUT);
pinMode(distSensor, INPUT);


for(int i = 0; i < smootheFC; i++){
smoother[i] = 0;

void loop() {

frameCounter ++;
int distance = analogRead(distSensor);
averageGen = 0;

if (frameCounter == timeToMove){
// Serial.println(thisSmooth);

total = total – smoother[thisSmooth];
smoother[thisSmooth] = distance;
total = total + smoother[thisSmooth];
thisSmooth ++;

if (thisSmooth >= smootheFC)
// Serial.println(“thisSmooth = 0”);
thisSmooth = 0;

for(int i = 0; i < trackFC-1; i++){

Serial.print(“, “);


average = total / smootheFC;

for(int i = trackFC -1; i > 0; i–)
trackMovement[i] = trackMovement[i-1];
trackMovement[0] = average;

for(int i = 0; i < trackFC-1; i++) averageGen += (trackMovement[i+1] – trackMovement[i]);

int score = 0;
boolean sameState = false;

for(int i = 0; i < stateCount-1; i++)
if (saveStates[i] == saveStates[i-1]) score++;
if (score > 2) {
sameState = true;
Serial.println(“^” );

Serial.println(averageGen );
if ((averageGen <= -400) && (trackMovement[trackFC-1] != 0))
states = 4;
timeToMove = 2000;
Serial.println(“DON’T HIT ME!!!” );
else if (average < 200 && averageGen < 50 && averageGen > -50 )

states = 0;
timeToMove = 1000;
Serial.println(“Guess I’m alone!” );

else if (average > distThresh && averageGen < 50 && averageGen > -50)
states = 1;
timeToMove = 3000;
Serial.println(“PET ME!” );
else if ((averageGen <= 0) && (averageGen > -200))
states = 2;
timeToMove = 1000;
Serial.println(“you are getting closerclosercloser to me!” );
else if ((averageGen >= 0) && (averageGen < 200))
states = 3;
timeToMove = 2000;
Serial.println(“you are getting farther from me!”);
else if (averageGen >= 400)
states = 5;
timeToMove = 5000;
Serial.println(“WHERE DID YOU GO!?”);

saveStates[stateIndex] = states;
if (stateIndex == stateCount) stateIndex = 0;

frameCounter = 0;


Leave a comment

SoapBox Physical Process

This week was a total mess and I have only just now felt comfortable sitting down and reflecting. But before I reflect, I should talk about the process.

Priya and I began with a similar practice to the one Ali Momeni had us do in class where we jot down 10 ideas in 5 minutes. After doing this we took turns telling each other our ideas and building off each one, after which we cycled through and eliminated one each round until we found the one we were most excited about. Our favorite ideas were a drink that tells how long it will be desirable for, a robot that dodges your punches, and a simple DJ that determines your mood or color and plays music based on that.

The robot dodging punches seemed particularly cool. We knew we couldn’t make a robot really dodge punches though. We could, however, experiment with how far we could take a simple distance sensor and interpret the input to general a wide range of responses, as opposed to a simple activation once a target distance is reached. The fastest solution to a robot that would do this was most easily an old used toy of mine from my childhood that we could bring to life. We originally envisioned the bot being a dramatic bratty character who always looks like it’s about to cry, and would ask needy questions or act abused. Since using the toy dog, the character changed a bit to a more loving but still needy puppy. The biggest struggle with this pup was his skeleton.

Here’s some documentation of our struggle:

Materials considered for skeleton- No idea what I’m doing.

We thought this could be a decent skeleton. We didn’t think how this would hold a Servo.

This is what the arms would look like in wood.

As you can see, these pieces puzzle together so that while we glue it while inside of the puppy, the skeleton will hold itself together to a helpful extent.


This is what we came up with in a half hour after failing for 8 straight hours with the other skeleton alternatives. We thought we could just use sticks and metal. How wrong we were. This worked better than everything else.


We felt we were successful in making him look pitiful. Nobody seemed to notice in class though 😦


I liked the simplicity of his design. Why does he need anything more if it’s just for the sake of character? I think for me it was the fact that I’ve had him for a very long time that made him exciting just as he was.

For the final design we made him a couch made of foam and covered with old bed sheets. We put the sensors in goggles around his eyes, so I guess we did add to his character, and in a functional way which was nice. See the more recent post on this project for the final product!